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(^-£')-diene conformation; e.g., Ih , were found to part icipate 
readily in the LUMOd i e n e-controlled Diels-Alder reactions.9 The 
stereochemistry of the [4 + 2] cycloaddition reaction products 
was established by spectroscopic techniques and was unambigu­
ously confirmed with the single-crystal X-ray s t ructure deter­
mination of adduct 9.13 '14 

Studies of full scope of the inter- and intramolecular [4 + 2] 
cycloaddition reactions of a ,0-unsa tura ted TV-benzenesulfonyl 
imines as well as their applications a re in progress and will be 
reported in due course. 
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Theoretical investigations suggest a small energy advantage for 
the oxaphosphetane 1 vs 2 (hypothetical gas-phase species),1 but 
the choice of 1 over 2 as the favored Wit t ig intermediate in 
solution has not been proved and is based on 1 H N M R chemical 
shifts and solid-state analogies.2 ,3 The structures of unusually 
stable pseudorotamers 3,3 ' , 4,4', and related compounds were 
likewise assigned by analogy.4""6 W e now report 13C N M R 
evidence that 1 is indeed the favored solution species, together 
with the kinetics of pseudorotamer interconversion. 

The N M R spectra of oxaphosphetanes 5,5 ' (from P h 2 M e P = 
C H 2 + 3-pentanone; 1 H N M R , toluene-</8: ring C H 2 , 8 3.56, d, 
1J = 16.4 Hz ; C H 3 P , 8 1.91, d, 1J = 13.7 H z ) , 8a,7 or the 
analogous 8b (13C spectra; Table I) at - 8 3 0 C or above showed 
only one set of signals, indicating either a single pseudorotamer 
or rapid interconversion. However, the 1 H spectrum of di-
benzophosphole (DBP) analogue 9,9' (from ( M e ) D B P = C H 2 + 
3-pentanone, - 5 3 0 C ) contained two signals for the ring methylene 
protons (1H N M R , CD 2 Cl 2 ; ring C H 2 , 8 3.92, d, 1J = 16.5 Hz ; 

(1) (a) Holler, R.; Lischka, H. J. Am. Chem. Soc. 1980, 102, 4632. (b) 
Bestmann, H. J.; Chandrasekhar, J.; Downey, W. G.; Schleyer, P. von R. J. 
Chem. Soc, Chem. Commun. 1980, 978. (c) Volatron, F.; Eisenstein, O. J. 
Am. Chem. Soc. 1987, 109, 1. 

(2) (a) Vedejs, E.; Snoble, K. A. J. J. Am. Chem. Soc. 1973, 95, 5778. (b) 
Vedejs, E.; Meier, G. P.; Snoble, K. A. J. J. Am. Chem. Soc. 1981,103, 2823. 

(3) (a) Ul-Haque, M.; Caughlan, C. N.; Ramirez, F.; Pilot, J. F.; Smith, 
C. P. /. Am. Chem. Soc. 1971, 93, 5229. (b) Bestmann, H. J.; Roth, K.; 
Wilhelm, E.; Bohme, R.; Burzlaff, H. Angew. Chem., Int. Ed. Engl. 1979,18, 
876. 

(4) Ramirez, F.; Pfohl, S.; Tsolis, E. A.; Pilot, J. F.; Smith, C. P.; Ugi, I.; 
Marquarding, D.; Gillespie, P.; Hoffmann, P. Phosphorus 1971, 1, 1. 

(5) (a) Gibson, J. A.; Roschenthaler, G. Z. Naturforsch. B 1977, 32, 599. 
Allworden, U.; Tseggai, I.; Roschenthaler, G.-V. Phos. Sulfur 1984, 21, 177. 
(b) Kolodyazhnyi, O. I. J. Gen. Chem. USSR 1986, 56, 246. 

(6) 3 and 3' decompose at 120 0C without interconversion. 4 and 4' 
pseudorotate rapidly at 20 0C because one oxygen can always occupy an apical 
site; see: Ramirez, F.; Ugi, 1. Adv. Phys. Org. Chem. 1971, 9, 25; and ref 5a. 
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Table I. 13C NMR Data for Oxaphosphetanes 5, 8, and 9 
chemical shifts (coupling) 

carbon 8a" 8b" 9* Sc 

O
s* obscured 133.8 ppm 134.3 ppm 148.8 ppm 

. . V - T (125.0Hz) (132.3 Hz) (70.5 Hz) 

> 1 
/ R 54.3 ppm 61.2 ppm 54.5 ppm 60.3 ppm 

-- ? I <87-4 H z ) <85-6 H z ) (8 2-2 H z ) ( 8 3 '° H z ) 
28.3 ppm 29.6 ppm 21.9 ppm 24.4 ppm 
(98.1 Hz) (99.0Hz) (98.1 Hz) (96.4 Hz) 

"Spectrum at -30 0 C, deuterated toluene. *Spectrum at -53 0 C, 
CD2Cl2. 'Spectrum at -53 0 C, deuterated toluene. 

8 2 .81, d, 1J = 15.5 H z ; C H 3 P , 8 1.72, d, 1J = 14.1 H z ) and 
coalescence was observed near room tempera ture . Line shape 
analysis8 (five points from - 3 to + 4 0 0 C ) gave the free energy 
A G * P S D R T N = 1 3 . 1 kca l /mol , but the fast exchange limit could 
not be reached due to competing Witt ig decomposition to alkene 
and phosphine oxide, A G * D E C = 25 kca l /mol (43-55 0 C , moni­
tored by N M R ) . 

The detailed s t ructure of oxaphosphetane 9,9' ( -53 0 C , slow 
exchange) is defined by the 13C spectrum. Three quaternary 
aromat ic (DBP) carbons (8 152.7, d, J = 12 Hz; 143.1, d, J = 
18 Hz ; 135.9, d, J = 14 Hz ) cannot be assigned with certainty, 
but a fourth signal at 8 134.3 ppm is unique because of the large 
1 3 C- 3 1 P coupling (1J = 132 H z ) , characterist ic of an equatorial 
sp2 carbon in the trigonal bipyramid.9 Equally informative is 
the 1 3 C- 3 1 P coupling constant of 'yP_c = 82 Hz for the ring C-3 
signal (8 54.5). The J value is consistent with 9 or 9', but not 
with the equatorial oxygen isomer 10 where apical C-3 should 
have lJ^c < 20 Hz . 9 

The characteristic 1 3 C- 3 1 P coupling constants 9,9' can be used 
to evaluate the geometry of unconstrained oxaphosphetanes. For 
example, the averaged 13C N M R spectrum of pseudorotamers 5,5' 
has nearly the same lJp_c = 83 Hz for C 3 as in 9,9' (82 H z ) , 
indicating that the population of 7 is negligible.10 The quaternary 
aryl C - P coupling of 70.5 H z is close to the mean estimated if 
5 / 5 ' are dominant relative to 6 at equilibrium (0.5[1Z69113, = ca. 
132 Hz + './apical = ca. 15 Hz] = 74 Hz) . Similarily, the 13C N M R 
spectra of 8a and 8b (Table I) correspond to dominant pseudo­
rotamers having apical oxygen and the D B P unit spanning api­
cal-equator ia l sites. These results confirm the conventional ox­
aphosphetane representations 1, 5, 9, etc. as orginally assumed 
for typical Wit t ig intermediates.2 

Pseudorotat ion rates (kPSDRTN = 5.6 X 103 sec"1)11 and de­
composition rates &DEC = 7.3 X 10"5 s-1) for 9 at 43 0 C differ by 
a factor of ca. 108 and the corresponding free energies of activation 
differ by 11.5 kcal /mol . Only the minimum pseudorotation rate 
of 5 can be estimated (&PSDRTN — 3 X 103 s ' at —83 0 C ) since 
the coalescence tempera ture could not be reached, but the acti­
vation barrier for alkene formation A G * D E C 'S again greater than 
ca. 10 kca l /mol above the pseudorotation barrier. Therefore, 
pseudorotation does not control the rate of the Witt ig decompo­
sition step. 

(8) (a) Stephenson, D. S.; Binsch, G. J. Magn. Reson. 1978, 32, 145. (b) 
DNMR5 program: Stephenson, D. S.; Binsch, G. Quantum Chemistry Program 
Exchange 1978, 11, 365, 

(9) Kay, P. B.; Trippett, S. J. Chem. Research (S) 1986, 62. 
(10) yP_c = 84-85 Hz is reported for adducts of Ph3P=13CHC3H7 + 

PhCHO: Maryanoff, B. E.; Reitz, A. B.; Mutter, M. S.; Inners, R. R.; 
Almond, H. R., Jr.; Whittle, R. R.; Olofson, R. A. J. Am. Chem. Soc. 1986, 
108, 7664. 

(11) Similar pseudorotation rates are observed for other DBP-containing 
phosphoranes, precedents that guided our selection of 8 and 9 for study: 
Hellwinkel, D.; Lindner, W.; Schmidt, W. Chem. Ber. 1979, 7/2, 281, and 
earlier references therein. Whitesides, G. M.; Eisenhut, M.; Bunting, W. M. 
J. Am. Chem. Soc. 1974, 96, 5398. 
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Even though AG*DEC is of much higher energy than AG*PSDRTN> 
there can still be an apparent correlation between slow decom­
position rates and slow pseudorotation in certain oxaphosphetanes 
such as 3 and 4 compared to 5. Consider the relevant transi­
tion-state geometries; TSPSDRTN lies between 1 and 2, and will 
increasingly resemble 2 as the stability of 2 vs 1 decreases 
(Hammond postulate). Since 2 has equatorial oxygen, the partly 
rehybridized P-C3 bond in TSPSDRTN will be longer than in 1. 
TS0EC should also have an elongated P-C3 bond because advanced 
P-C vs C-O bond breaking is predicted according to bond strength 
comparisons as well as calculations.1 Both TSDEC and T S P 8 0 R 7 N 

in 3 or 4 will therefore be destabilized by the electronegative CF3 

groups, substituents that favor trigonal-bipyramidal structures, 
apical oxygen geometries, and shorter (equatorial) P-C3 bonds.12 

The result will be a decrease in kDEC and a coincidental decrease 
in fcpsDRTN. In more typical Wittig intermediates, the geometry 
of TSDEC leading to alkene could be increasingly different from 
the geometry of 2 or of TSpsDRTN. However, the geometric options 
are severely restricted for any cyclic 4-membered structure that 
contains phosphorus, and TS0 E C will have certain geometric 
features in common with 2 regardless of mechanistic details. 

The conclusion that both TSDEC and TSPSDRTN have an elon­
gated P-C3 bond does not mean that 2 is a required intermediate13 

or that any specific pseudorotamer is necessary before decom­
position can occur. A preequilibrium of 1 with 2 affects decom­
position rates only if (1) TSps0RTN is greater than or comparable 
to TSDEC in free energy, or (2) if 2 is more stable than 1. Oth­
erwise, the relative populations of pseudorotamers or the path to 
the transition state can have no kinetic significance (Curtin-
Hammett principle).14 Advanced P-C3 bond breaking in the 
decomposition step is likely in any event, and this interpretation 

(12) Holmes, R. R. Pentacoordinate Phosphorus; ACS Monograph 175; 
American Chemical Society: Washington, DC, 1980; Vol I and II. 

(13) (a) Bestmann, H. J.; Vostrowsky, O. Top. Curr. Chem. 1983, 109, 
85. (b) Bestmann, H. J. Pure Appl. Chem. 1980, 52, 771. (c) Bestmann, H. 
J. Pure Appl. Chem. 1979, 51, 515. 

(14) For a discussion of fundamentals, see: Eliel, E. L. Stereochemistry 
of Carbon Compounds, McGraw-Hill: New York, 1962; pp 151-152 and 
237-239. 
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would apply to a diradical cleavage as well as to an asynchronous 
cycloreversion. We prefer the latter description for the decom­
position of typical Wittig intermediates to alkenes and phosphine 
oxide pending further evidence. 
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For some time now this laboratory has had an interest in the 
organoaluminum chemistry of multidentate amines. Interactions 
of organoaluminum species with multidentate amines containing 
N-H fragments have proven to be quite interesting in that such 
systems, characteristically involving Al-R/N-H bond cleavage, 
result in novel organoaluminum products possessing extensive 
aluminum-nitrogen networks. We have recently reported several 
such unusual organoaluminum compounds.1-6 To assess the 
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